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Theoretical results for the electrical conductivity of noble gas plasmas are presented in comparison with
experiment. The composition is determined within a partially ionized plasma model. The conductivity is then
calculated using linear response theory, in which the relevant scattering mechanisms of electrons from ions,
electrons, and neutral species are taken into account. In particular, the Ramsauer-Townsend effect in electron-
neutral scattering is discussed and the importance of a correct description of the Coulomb logarithm in electron
scattering by charged particles is shown. A detailed comparison with recent experiments on argon and xenon
plasmas is given and results for helium and neon are also revisited. Excellent agreement between theory and
experiment is observed, showing considerable improvement upon previous calculations.
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I. INTRODUCTION

The conductivity of noble gas plasmas is of interest in
relation to the metal-nonmetal transition at high densities.
This transition occurs as pressure ionization gives rise to a
sudden increase in the free electron density, which in turn
results in a large increase in the electrical conductivity.

Investigation of noble gas plasmas has been conducted
over the last 30 years using explosively driven shock wave
plasmas, including He �1–3�, Ne �4�, Ar �4–6�, Kr �7� and Xe
�4,6,8–11�. In these experiments, ionization of a gaseous
sample occurs through compression and heating behind the
shock wave. Noble gas plasmas were created with tempera-
tures T of 6000−105 K and densities � of 0.001
−10 g/cm3. The dc conductivity �dc was measured in each
experiment. In the most recent experiments by Shilkin et al.
�6�, plasmas in magnetic fields have been investigated, pro-
viding measurements of the Hall voltage. Within the experi-
mental temperature and density range, only partial ionization
of the gas is achieved. A fundamental problem for plasma
diagnostics is the determination of the free electron density
ne. Comparison between experimental measurements and
theoretical predictions of transport properties can provide a
useful diagnostic tool if we have a complete model of elec-
tron transport and if transport coefficients can be measured
with sufficient accuracy.

In order to describe transport properties of dense plasmas,
a consistent, quantum statistical description of electron mo-
tion is necessary. The cross sections for scattering of elec-
trons by each species must be carefully calculated, while
considering the influence of the surrounding medium. Trans-
port properties of plasmas are heavily dependent on the state
of the system, therefore an accurate picture of the plasma
composition is also required.

In Sec. II, we present a linear response theory model of
electron transport, which is able to take into account each of

the above considerations. A brief overview of various ap-
proaches to calculating the scattering cross sections is given
in Sec. III, as well as a discussion on the Ramsauer-
Townsend effect �12,13� observed in noble gases.

In Sec. IV, results from linear response theory are com-
pared in detail with recent experimentally determined dc
conductivities of Ar and Xe plasmas. Experiments with He,
Ne, and Kr plasmas are also discussed. Taking into account
the Ramsauer-Townsend effect in the electron-neutral scat-
tering leads to improvement on earlier results �14�. The
plasma temperature and composition is required for theoret-
ical calculations. Results of two different program packages
for determining the plasma composition �15,16� are pre-
sented and discussed.

II. LINEAR RESPONSE THEORY

For a detailed discussion of plasma effects, we introduce
the dimensionless parameters

� =
e2�

4��0
�4�ne

3
�1/3

,

� =
2me

��2 �3�2ne�−2/3,

where �=1/ �kBT�. The coupling parameter � is the ratio of
the average potential energy to the temperature �in units of
energy� and the degeneracy parameter � is the ratio of the
temperature to the Fermi energy.

Linear response theory �LRT� in the formulation of
Zubarev et al. �17� is a well-established general approach to
electron transport in the presence of weak external fields.
Electron motion is described using a linearized nonequilib-
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rium statistical operator � �NESO�, and transport coefficients
are expressed in terms of equilibrium force-force correlation
functions �FFCFs�. This approach is detailed thoroughly by
Röpke �18�, Reinholz �19�, and Redmer �15� we give here
only a brief outline.

Considering the influence of a weak external electric field
E we presume that electron momentum, which determines
the electric current, is a relevant observable. A set of �L
+1� generalized observables is defined. Each observable is
the sum of electron momenta weighted by a different power
n of the dimensionless energy

Pn = �
k

�k��	k�nak
†ak, �1�

where k is the wave vector, 	k=�2k2 / �2me� is the classical
kinetic energy, and ak

†ak is the electron number operator. The
generalized observables are referred to hereafter as moments.
Time derivatives are taken with respect to the total electronic
Hamiltonian H=Hs+Hext:

Hs = �
k

	kak
†ak + �

c,k,q
Vec�q�ak+q

† ak, �2�

Hext = eE · R , �3�

Ṗn =
i

�
�H,Pn� = �

c

Fn
ec, �4�

Fn
ec =

i

�
�Vec�q�ak+q

† ak,Pn� , �5�

where Vec�q� is the Fourier transform of the potential energy
between electrons and species c, and R is the center of mass
position of the electrons such that P0= ime�H ,R� /�. A rel-
evant statistical operator �rel is created assuming a maximum
entropy condition, similar to the formation of the equilibrium
statistical operator in the grand canonical ensemble �17�

�rel�t� =
1

Zrel
e−��Hs+
eNe+�n�n�t�·Pn�, �6�

where 
e and Ne are the chemical potential and number of
free electrons, respectively. Normalization Tr��rel	=1 is en-
sured by the partition function Zrel. The NESO ��t� satisfies
a nonequilibrium von Neumann equation �15�, in which cor-
relations between particles are introduced through �rel�t�,

���t�
�t

−
i

�
�H,��t�� = − lim

�→0
����t� − �rel�t�� . �7�

Assuming small external fields, �rel, Eq. �6� is linearized,

�rel�t� = �0�1 − �
n

�n�t�

0

�

d�e�HsPne−�Hs� ,

�0 =
1

Z0
e−��Hs+
eNe�,

and the Lagrange multipliers �n�t� are found by imposing the
condition that �rel is sufficient to provide averages of all
relevant observables

�Pn�t = Tr���t�Pn	 = Tr��rel�t�Pn	 . �8�

We proceed by solving Eq. �7� to obtain an expression for
��t� in terms of �rel�t�, and then solving Eq. �8� for the
Lagrange multipliers �n�t�. The dc conductivity �dc is deter-
mined by matching the phenomenological and statistical de-
scriptions of the electric current density

j�t� = �dcE = −
e


0me
�P0�t, �9�

where 
0 is the normalization volume. An expression of the
conductivity is found in terms of Kubo products Nnm and
FFCFs dnm �15,19,20�

�dc = −
e2�


0
d
� 0 N0m

N̄n0 d
� ,

Nnm =
1

me
�Pn;Pm� , �10�

dnm = �
c

dnm
ec = �

c
�Fn

ec;Fm
ec� ,

where N0m= �N00N01¯N0L	 is a row vector, N̄n0

= �N00N10¯NL0	T is a column vector, and d is the �L+1�
� �L+1� matrix with elements dnm. Correlation functions of
two observables A and B are defined by �17�

�A;B� =
1

�



0

�

d� Tr��0e�HsAe−�HsB	 , �11�

�A;B� = lim
�→0



−�

0

dt�e�t��eiHst�/�Ae−iHst�/�;B� . �12�

The Kubo products Nnm are generalized particle numbers
given by �19�

Nnm =

0

3�2�
�2me

�2�
�3/2�n + m +

3

2
�Fn+m+1/2��
e� , �13�

where Fn are the Fermi integrals of order n,

Fn��
e� = 

0

�

dxxnf0�x� , �14�

and f0�x�= �exp�x−
e�	+1�−1 is the Fermi distribution func-
tion of the normalized energy x=�	k.

The FFCFs are expressed in terms of the momentum
transfer �transport� cross sections Qm

ec�l� �see Sec. III� �19�. In
the electron-ion �ei� FFCFs, collisions of electrons with ions
of all charges Zj � je are included,
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dnm
ei =

4
0ne

3�
�2me

��



0

�

dxxn+m+2e−x��
j

�njQm
ej�1��x��2

,

�15�

where nj is the density of ions with charge Zj. The electron-
neutral �ea� FFCFs are given by a similar expression

dnm
ea =

4
0nena

3�
�2me

��



0

�

dxxn+m+2e−xQm
ea�1��x� , �16�

where na is the density of neutral particles. For electron-
electron �ee� interactions, the FFCFs contain the higher order
cross sections Qm

ee�l� for l=2,4 ,6 , . . .,

dnm
ee =

4
0ne
2

3�
�me

��



0

�

dxx3e−x�
l

Rnm
�l� �x�Qm

ee�l��x� , �17�

where Rnm
�l� �x� are the polynomials �19�

Rnm
�l� �x� = Rmn

�l� �x� ,

Rn0
�l��x� = 0, R21

�2��x� = x +
7

2
,

R11
�2��x� = 1, R22

�2��x� = x2 + 7x +
77

4
.

It is important to note that in Eqs. �10�, all interactions within
the plasma appear in an additive fashion within the FFCFs,
dnm=dnm

ei +dnm
ea +dnm

ee . Thus within LRT we have a clear and
consistent structure in which to include all plasma species.
This offers an advantage over other methods such as the
relaxation time approximation �RTA�, in which such a struc-
ture must be constructed, see, for example, Seeger �21� and
Lee and More �22�.

Convergence of the conductivity �10� occurs within LRT
as the number of moments is increased �15,19�. For instance,
5% accuracy is achieved by using a two moment approxima-
tion while five moments give convergence better than 1%.
This approach can be extended to describe other transport
properties by considering other external perturbations. For
example, inclusion of a temperature gradient allows calcula-
tion of the thermopower and heat conductivity �19,20�.

These transport coefficients have previously been calcu-
lated within a three moment approximation using the FOR-

TRAN90 program package COMPTRA04. Recently, however,
the program ELECTRA07 has been developed, which allows
transport coefficients to be calculated within a five moment
approach, resulting in improved convergence �23�. In order
to do this, higher order momentum transfer cross sections
�see Sec. III� must be taken into account. Numerical im-
provements also allow for both more accurate and faster cal-
culations. Furthermore, the inclusion of a magnetic field
within ELECTRA07 enables calculation of the Hall resistivity
�24,25�. The program package COMPTRA04 is nevertheless
still employed for the calculation of the plasma composition.

III. SCATTERING MECHANISMS

Scattering of electrons from charged species is the most
elementary collision within a partially ionized plasma �PIP�.
The dominant force is the Coulomb interaction, which is
screened by other charged particles in the medium. We can
treat electron-ion �ei� and electron-electron �ee� scattering in
either the Born approximation, which assumes small angle
scattering, or using a T-matrix �phase shift� approach, which
also includes strong collisions. The momentum transfer cross
sections are given by the collision integral

Qm
ec�l��k� = 2�


0

�

d� sin ��1 − cosl ��
��ec

�

. �18�

In the Born approximation, the differential cross sections

��ec

�

= �
0me

2��2�2�
Vec�q�
2 −
�ec

2

Vec�q�Vec�q��
� �19�

depend on the interaction potential and

q = 2k sin��/2� ,

q� = 2k cos��/2� , �20�

which are the momenta transferred during scattering through
angles of � and �−�, respectively. If the bare Coulomb po-
tential is introduced into the ei collision integral, then it be-
comes divergent and a cutoff value must be introduced for
the maximum impact parameter. If on the other hand, we use
the screened Coulomb �Debye� potential �26�

Vej�r� = −
Zje

2

4�	0r
e−r/rD, �21�

rD =� 	0

�e2� j
Zj

2nj

,

where rD is the Debye screening radius, the collision integral
is convergent, and cutoff parameters are not required. The
cross sections are written in terms of the corresponding Cou-
lomb logarithms ln �,

Qm
ec�l��k� = � Zce

2

4�	0
�2 �

	k
2 ln �ec�l��k� , �22�

and the Coulomb logarithms required can be given analyti-
cally in terms of the parameter b=4k2rD

2 �27�

ln �ei�1��k� =
1

2
�ln�1 + b� −

b

1 + b
� ,

ln �ee�2��k� = �1 +
3

b
−

1

b�b + 2��ln�1 + b� −
5

2
, �23�

ln �ee�4��k� = 2�1 +
3

b
+

3

b2���1 +
3

b
+

1

b + 2
�ln�1 + b� − 3� .

In the T-matrix approach, the differential cross sections are
given by the scattering amplitude f�k ,�� �28,29�
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��ec

�

= 
f�k,��
2 −

�ec

2

f�k,��f�k,� − ��
 . �24�

The scattering wave function is decomposed into partial
waves u��r� with respect to the angular momentums � using
Legendre polynomials P�,

�
�=0

�
u��r�

r
P��cos �� � eik·r +

f�k,��
r

eikr, �25�

and determined by numerically solving the radial
Schrödinger equation �30�

� �2

�r2 + k2 −
��� + 1�

r2 −
2me

�2 Vec�r��u��r� = 0.

At distances much larger than the screening length, the nu-
merical solution can be matched to the general solution

u��r� = �r�B��k�J�+1/2�kr� + C��k�Y�+1/2�kr��

to obtain B��k� and C��k�, where J and Y are Bessel func-
tions of the first and second kind �31�. Comparing the scat-
tering wave function to the asymptotic solution, we obtain
the scattering phase shift ���k�,

u��r → �� � sin�kr − ��/2 + ���k�� ,

���k� = arctan�−
C��k�
B��k�

� . �26�

���k� is the change in phase due to the presence of the scat-
tering potential. In order to include the effects of screening,
the Debye potential �21� is used within the phase shift cal-
culations. The momentum transfer cross sections are then
calculated using the phase shifts �32,33�

Qm
ec�1��k� =

4�

k2 �
�=0

�

�� + 1�sin2����k� − ��+1�k�� ,

Qm
ee�2��k� =

4�

k2 �
�=0

�
�� + 1��� + 2�

2� + 3
sin2����k� − ��+2�k�� ,

Qm
ee�4��k� =

4�

k2 �
�=0

�
�� + 1��� + 2�

�2� + 3��2� + 7�� �� + 3��� + 4�
2� + 5

sin2����k�

− ��+4�k��
2�2�2 + 6� − 3�

2� − 1
sin2����k� − ��+2�k��� .

�27�

In Fig. 1, we compare the cross sections obtained using
the Born approximation �23� with results from the T-matrix
approach �27�, applying the Debye potential to both. At high
impact energies the T-matrix approach converges to the

(a)

(b)

FIG. 1. Momentum transfer cross sections in dependence of
energy for ei scattering �a� and ee scattering �b�. Shown are results
of the T-matrix �27� and the Born approximation �23�, using a De-
bye screened potential.

(a)(a)(a)(a)

(b)(b)(b)(b)

FIG. 2. �Color online� Experimental measurements of the ea
momentum transfer cross sections as a function of energy for argon
�42,46–48� �a� and xenon �51–53� �b�. Note that Hayashi data is a
fit to all available data up until 1983.
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analytic result of the Born approximation. At low impact
energies, the T-matrix produces much smaller cross sections
than the Born approximation. This is because the T-matrix
approach gives a full description of strong collisions, which
are important at low energies. The Born approximation is
therefore not expected to be accurate for low temperature,
high density plasmas, in which collisions with small impact
parameters and low impact energies dominate.

In electron-neutral �ea� scattering, the dominant force is
described by a dipole interaction, which is caused by the
polarization of the atomic electron cloud as the scattering
electron approaches. A polarization potential is commonly
applied �34�, which reads

Vea�r� = −
e2

8�	0

�p

�r2 + r0
2�2�1 +

r

rD
�2

e−2r/rD, �28�

where �p is the electric polarizability of the neutral atom and
r0 ensures a finite interaction at zero separation. The latter is
of the order of the size of the atom, see, e.g., Ref. �15� and
references therein. This potential has been quite successful in
describing the transport properties of metallic plasmas
�35,36�. The polarization potential, however, is insufficient to
describe scattering of electrons from the noble gas atoms. A
feature known as the Ramsauer-Townsend minimum is ob-
served in the cross sections of these atoms �12,13�, which is
a deep and broad minimum occurring at low impact energies

TABLE I. Experimental densities �, temperatures T, and conductivities �6� �exp. Also presented are �:
fraction of singly ionized atoms, �: calculated conductivities, and �: Coupling parameter calculated using �C.
Subscripts C and Gr refer to results from the COMPTRA04 �54� and Gryaznov �16� composition programs,
respectively. An asterisk indicates data obtained in reflected shock wave. Theoretical conductivities calculated
within LRT, a five moment approximation with a T-matrix approach for ei and ee interactions, and experi-
mental results for ea interactions. The number in square brackets denotes the power of 10.

� T �exp �C �Gr

�g/cm3� �K� �C �Gr �
 m�−1 �
 m�−1 �
 m�−1 �

Ar 2.53�−02� 7.85�+03� 5.64�−05� 6.38�−05� 8.80�+01� 1.33�+02� 1.46�+02� 9.54�−02�
Ar 2.54�−02� 8.18�+03� 9.34�−05� 1.06�−04� 1.60�+02� 1.91�+02� 2.11�+02� 1.08�−01�
Ar 2.56�−02� 9.38�+03� 4.43�−04� 5.01�−04� 7.70�+02� 5.60�+02� 6.13�+02� 1.59�−01�
Ar 2.57�−02� 9.82�+03� 7.17�−04� 8.20�−04� 7.20�+02� 7.71�+02� 8.48�+02� 1.79�−01�
Ar 2.59�−02� 1.05�+04� 1.40�−03� 1.61�−03� 9.40�+02� 1.20�+03� 1.32�+03� 2.10�−01�
Ar 2.62�−02� 1.11�+04� 2.37�−03� 2.76�−03� 1.24�+03� 1.66�+03� 1.84�+03� 2.37�−01�
Ar� 6.09�−02� 1.19�+04� 3.20�−03� 3.55�−03� 1.00�+03� 2.14�+03� 2.30�+03� 3.24�−01�
Ar� 6.22�−02� 1.27�+04� 5.58�−03� 6.24�−03� 2.20�+03� 3.04�+03� 3.28�+03� 3.68�−01�
Ar� 6.26�−02� 1.30�+04� 6.77�−03� 7.16�−03� 3.00�+03� 3.43�+03� 3.56�+03� 3.84�−01�
Ar� 6.34�−02� 1.34�+04� 8.64�−03� 9.24�−03� 3.11�+03� 3.99�+03� 4.17�+03� 4.06�−01�
Ar� 6.67�−02� 1.46�+04� 1.66�−02� 1.80�−02� 5.40�+03� 5.94�+03� 6.26�+03� 4.71�−01�
Ar� 6.77�−02� 1.49�+04� 1.93�−02� 2.09�−02� 6.03�+03� 6.51�+03� 6.86�+03� 4.88�−01�
Ar� 6.87�−02� 1.52�+04� 2.22�−02� 2.41�−02� 3.50�+03� 7.10�+03� 7.51�+03� 5.04�−01�
Ar� 7.30�−02� 1.63�+04� 3.58�−02� 3.70�−02� 1.20�+04� 9.18�+03� 9.33�+03� 5.62�−01�
Ar� 7.43�−02� 1.66�+04� 4.03�−02� 4.16�−02� 1.38�+04� 1.02�+04� 1.03�+04� 5.77�−01�

Xe 8.46�−02� 7.75�+03� 8.52�−04� 7.80�−04� 3.10�+02� 6.14�+02� 5.79�+02� 2.40�−01�
Xe 8.84�−02� 9.55�+03� 5.96�−03� 5.47�−03� 1.30�+03� 1.90�+03� 1.80�+03� 3.78�−01�
Xe 9.11�−02� 1.02�+04� 1.03�−02� 9.61�−03� 1.60�+03� 2.58�+03� 2.47�+03� 4.30�−01�
Xe 9.66�−02� 1.12�+04� 2.12�−02� 1.87�−02� 1.65�+03� 3.88�+03� 3.60�+03� 5.07�−01�
Xe 9.80�−02� 1.14�+04� 2.41�−02� 2.12�−02� 1.81�+03� 4.16�+03� 3.82�+03� 5.23�−01�
Xe 1.07�−01� 1.24�+04� 4.33�−02� 3.81�−02� 4.00�+03� 5.85�+03� 5.40�+03� 6.02�−01�
Xe 1.19�−01� 1.35�+04� 7.43�−02� 6.52�−02� 5.70�+03� 8.10�+03� 7.35�+03� 6.82�−01�
Xe* 2.34�−01� 1.29�+04� 4.93�−03� 3.66�−02� 5.26�+03� 7.07�+03� 5.77�+03� 7.84�−01�
Xe* 2.68�−01� 1.42�+04� 9.05�−02� 6.42�−02� 6.00�+03� 1.04�+04� 8.09�+03� 9.12�−01�
Xe* 2.87�−01� 1.48�+04� 1.15�−01� 7.77�−02� 1.00�+04� 1.20�+04� 9.45�+03� 9.70�−01�
Xe* 3.20�−01� 1.56�+04� 1.52�−01� 1.00�−01� 9.08�+03� 1.47�+04� 1.11�+04� 1.05�+00�
Xe* 3.29�−01� 1.57�+04� 1.58�−01� 1.06�−01� 1.63�+04� 1.51�+04� 1.16�+04� 1.06�+00�
Xe* 3.81�−01� 1.68�+04� 2.18�−01� 1.34�−01� 1.69�+04� 1.93�+04� 1.36�+04� 1.16�+00�
Xe* 4.53�−01� 1.83�+04� 3.07�−01� 1.88�−01� 2.39�+04� 2.51�+04� 1.79�+04� 1.27�+00�
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��0.5 eV�. This property cannot be reproduced using a po-
larization potential, and it has been shown in theoretical cal-
culations that the exchange interaction of the scattering elec-
tron with the bound electrons must also be considered �see,
for example, �37–39��.

In this work we use experimental results for the ea scat-
tering cross section, He �40–43�, Ne �42,44,45�, Ar
�42,46–48�, Kr �49,50�, and Xe �51–53�. As examples of the
depth of the Ramsauer minimum we show experimental re-
sults for Ar and Xe in Fig. 2. Most of these experiments
observe isolated scattering events, with no effects from a
charged, surrounding medium. We therefore expect there to
be medium corrections in using these results when the Debye
length is small.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

Initially, we concentrate here on conductivity measure-
ments taken in shock compressed Ar and Xe plasmas �6�, see
Table I. Included are the experimentally measured conduc-
tivities, the mass densities and temperatures inferred from
the shock wave and mass velocities �for details, see �6�� and
theoretical calculations of the conductivity using a T-matrix
approach for ei and ee interactions and experimental cross
sections for ea interactions.

The plasma composition is required for theoretical calcu-
lations of the conductivity, we therefore present the compo-

sitions calculated using both the COMPTRA04 program �15,54�
and the similar SAHA IV code �16,55� developed for partially
ionized plasmas. Since, in these experiments, the fraction of
doubly and higher charged ions is negligible, the composi-
tion is uniquely characterized by the ionization degree �,
which represents the fraction of atoms that have been singly
ionized. The ionization degree calculated for Ar plasmas us-
ing COMPTRA04 is consistently 3%–13% lower than that
given by SAHA IV, resulting in 1%–9% smaller calculated
conductivities. However, COMPTRA04 gives consistently
higher ionization in Xe plasmas, in particular more than 25%
in the case of high densities from the reflected shock wave
conditions, resulting in up to 20% larger calculated conduc-
tivities. For the following calculations, we shall use the com-
positions calculated by COMPTRA04. Note that the conductivi-
ties calculated differ less than the ionization degrees and stay
within the experimental errors.

The experiments produced plasmas with coupling param-
eters 0.1���2 and degeneracy parameters ��5 �not
shown in Table I�. Comparison with molecular dynamics
simulations has shown that LRT is valid for ��1 �56� and,
since neither the T-matrix nor the ee FFCFs fully take into
account the effects of degeneracy, LRT is valid only for non-
degenerate to weakly degenerate plasmas ���1�. The ex-
periments shown in Table I therefore lie in a density and
temperature range quite useful for the testing and compari-
son of theoretical approaches. In Fig. 3, we compare experi-
mental results for the conductivity of Ar and Xe with theo-
retical calculations made using LRT within a five moment
approach. Theoretical calculations using both experimental
results for the ea cross sections and the polarization potential
are shown.

Previous calculations within LRT by Kuhlbrodt et al.
�14�, in which the polarization potential �28� was used to
calculate the ea cross sections Qm

ea of noble gases, did not
satisfactorily reproduce experimental results, as can be seen
in Fig. 3. Since the Ramsauer minimum is not accounted for
in these calculations, the contribution of the ea collisions is
significantly overestimated, resulting in conductivities that
are too low in comparison with the experimentally measured
conductivities.

On the other hand, using experimental cross sections for
the ea interactions, quite good agreement between theory and
experiment is obtained. Theoretical results fall within the
30% error bars of the experimental results for many points.
These results presented here therefore display a significant
improvement in theoretical calculations of the conductivity
of noble gas plasmas, matching theory and experiments sat-
isfactorily.

Finally, we consider a wider range of experimentally
available conductivities for noble gases, in a temperature and
density region accessible to LRT. In Fig. 4, experimental
results for the conductivity of He �1–3�, Ne �4�, Ar �4,6�, and
Xe �4,6,9� are shown. Most experimental points have error
bars of around 30%, which are omitted here for the purpose
of clarity. The calculations treat ei and ee interactions in a
T-matrix approach using the Debye potential, while experi-
mental momentum transfer cross sections are used for the ea
interactions. Isotherms calculated within LRT are shown for
He and Ne. From these we see how partial ionization can

(a)(a)(a)(a)

(b)(b)(b)(b)

FIG. 3. �Color online� Conductivity of argon �a� and xenon �b�
as a function of the temperature T, for plasma parameters see Table
I. �: experimental results �6� shown with 30% error bars. LRT
calculated according to Eq. �10� using five moments, ei and ee
collisions are treated using a T-matrix approach �27�, ea interactions
treated using experimental data �, and a polarization potential �28�
�14� �, respectively. Composition is obtained using COMPTRA04.
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introduce a minimum in the conductivity due to a reduction
of free charge carriers and an additional scattering mecha-
nism, as discussed in previous works �15,36�. Where the
plasma temperature is available, we also give point by point
comparison of LRT with each experimental point.

Overall, we obtain excellent agreement for all noble gases
up to densities of ��1 g/cm3. Above this density, there are
two factors that make calculations difficult. First, composi-
tion calculations for the heavier elements �Ar, Kr, Xe� be-
come unreliable at larger densities, and also for temperatures
below 104 K, due to instabilities in the solutions of the
coupled mass action laws. For more details on this, see Ku-
hlbrodt et al. �14,36�. Second, at larger densities, diffraction
of electrons from the ionic lattice should be considered and a
static ionic structure factor Sii must be taken into account
within the FFCFs. The structure factor of dense plasmas has
been calculated considering only elastic collisions, see Rein-
holz et al. �57�. However, in light of the previously men-
tioned difficulties in calculating the composition at large val-
ues of �, the structure factor for a randomly distributed
system �Sii=1� is applied in the present work. For these rea-

sons, data at densities above 1 g/cm3 �5,7,8,10,11� have
been omitted in Fig. 4. In addition, quantum effects such as
degeneracy, relevant at high densities, are not taken into ac-
count within the T-matrix approach.

V. CONCLUSIONS

LRT theory provides a quantum statistical framework
within which all plasma interactions, including electron-
electron interactions, as well as electron degeneracy and
charge shielding can be accounted for in a consistent manner.
For this reason, LRT is a well-suited theory for describing
the partially ionized plasmas created in experiments. LRT
also reproduces the known limiting cases. Analytical expres-
sions within perturbation theory have been shown to be valid
up to ��1.

The ionization degree of a plasma is a crucial factor in
determining which approximations can be made within the-
oretical models. In weakly ionized plasmas, particular em-
phasis must be placed on the description of ea collisions. In
the case of noble gas plasmas, we find that a polarization

(a)

(b)

(c)

(d)

FIG. 4. Conductivity of helium, neon, argon, and xenon as a function of the mass density �: Experimental data from shock compressed
plasma experiments. Results of LRT calculated using a five moment approximation, a T-matrix approach for ei and ee cross sections, and
experimental results for ea cross sections. Composition is obtained using COMPTRA04.
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potential is insufficient to describe the Ramsauer-Townsend
minimum, while experimental data for the momentum trans-
fer cross sections can be easily incorporated into calcula-
tions. The T-matrix approach converges with the analytical
results of the Born approximation at high energies, which
can be applied to interactions between charged particles in
high temperature, low density plasmas. Calculations using
the Born approximation are very fast and are preferable to
the T-matrix when appropriate. For most of the plasmas con-
sidered in this work, however, it is necessary to use a
T-matrix approach to describe ei and ee interactions.

Sources of notable error can be found in both experiment
and theory. The conductivity is measured under extreme con-
ditions, placing significant strain on diagnostic equipment,
and an error of 30% is suggested �6�. Measurements of pres-
sure and temperature are also required from the experiments
in order to calculate the composition, and each of these car-
ries additional error. Then, using the same pressure and tem-

perature as input, compositions determined using different
thermodynamic models differ by a factor of up to 2.

Considering current experimental error and uncertainty in
the composition, our present calculations within LRT provide
excellent agreement over a wide range of temperatures
104 K�T�105 K and densities 0.001 g cm−3��
�1 g cm−3, for all of the noble gas plasmas investigated.
This represents enormous progress in dense plasma diagnos-
tics.
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